American Society for Microbiology General Meeting, San Francisco, CA (USA), June 2012

Increasing Rates of Extended-Spectrum Beta-Lactamase (ESBL) Producing Strains among Community Urinary Isolates and Impact of Patient Age on **ESBL Prevalence and Resistance Rates: A Five-Year Study**

Shaker E. Farhat^{1*}, Lisa Louie², Idelta Coelho¹, George Lim¹, Christine Watt², Bhavisha Shingala¹, Dimple Shah¹, Betty Premraj¹, Nasir Azim¹, Andrew E. Simor^{1,2,3}

¹Alpha Laboratories Inc., Toronto, ON; ²Sunnybrook Health Sciences Centre, Toronto, ON; ³University of Toronto, Toronto, ON, **CANADA**

*E-mail: shaker@alpha-it.com

ABSTRACT

Background: Monitoring resistance of ESBL-producing organisms is critical for guiding appropriate empiric antimicrobial therapy. As most infections caused by ESBL producers in the community involve the urinary tract, we investigated the prevalence of community urinary ESBL-producing Escherichia coli and Klebsiella strains over the past 5 years and determined their resistance to four commonly used oral antimicrobials.

Methods: E. coli and Klebsiella isolates from urine cultures obtained from April 2006 to March 2011 were tested by the doubledisk synergy method to identify ESBLs, and disk diffusion with ciprofloxacin (CIP), nitrofurantoin (FM), norfloxacin (NOR) and trimethoprim/sulfamethoxazole (TMP/SMX) in accordance with CLSI quidelines. A subset (n = 201) was tested by PCR for ESBLencoding genes. Data were analyzed by age groups.

Results: Of the total of nonduplicate 18.759 E. coli and 1.872 Klebsiella spp., 642 (3.4%) E. coli and 27 (1.4%) Klebsiella spp. were identified as ESBL producers by the double-disk synergy method. The ESBL rates in E. coli increased over 5 years from 1.8% to 4.0% (P < 0.01) and from 0.4% to 1.7% in Klebsiella spp. (P < 0.01). Of the ESBL-producing strains, 8.2%, 11.1%. 23.2%, 24.2%, and 33.3% were isolated from patients who were ≤18, 19-30, 31-50, 51-65, and >65 years of age, respectively. blactx.m. blacxa-1, blashy, and blatem genes were present in 94%, 35%, 13%, and 44% of PCR-tested strains, respectively, with blactx.m found in 97% of the E. coli strains and blashy in 92% of the Klebsiella strains. Resistance rates for CIP. FM. NOR, and TMP/SMX were 62%, 5%, 62%, and 57%, respectively. There was a trend for higher resistance rates against CIP and NOR with

Conclusions: There has been a steady increase in ESBL rates in community urinary isolates over the past 5 years, with a trend towards higher rates in older patients. ESBL-producing E. coli and Klebsiella spp. were often multi-drug resistant, but most isolates remained susceptible to FM. blactx-m was the predominant ESBL among urinary E. coli isolates in the community.

INTRODUCTION

Serious infections due to organisms harbouring extended-spectrum \(\mathbb{B}\)-lactamases (ESBLs) have been reported worldwide with significant morbidity and mortality. Although ESBLs typically do not hydrolyze 7-α-methoxy-cephalosporins and are inactivated by β-lactamase inhibitors, recent reports suggest that treatment of infections due to ESBL producing organisms with cephamycins or β -lactam/ β -lactamase inhibitor combinations may result in clinical failure, thus further limiting therapeutic options, *%R, resistance rate (%); CIP, ciprofloxacin; FM, nitrofurantoin; NOR, norfloxacin; NT, not tested for patients \leq 18 yr; TMP/SMX, already rendered more difficult by the emergence or co-production of resistance to other antimicrobials.

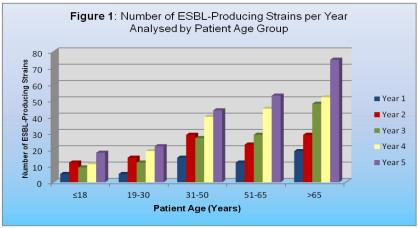
Dissemination of infections caused by ESBL-producing and other multidrug-resistant organisms has recently been described as a significant threat of global crisis proportions.⁴ Although most urinary tract infections (UTIs) are uncomplicated, serious ESBLassociated infections (e.g., ESBL-associated bacteraemia) are known to originate frequently from the urinary or biliary tract.8 As most infections caused by ESBL producers in the community involve the urinary tract, we investigated the prevalence of community urinary ESBL-producing Escherichia coli and Klebsiella strains over the past 5 years and determined their resistance to four oral antimicrobial agents, ciprofloxacin (CIP), nitrofurantoin (FM), norfloxacin (NOR) and trimethoprim/sulfamethoxazole (TMP/ SMX), commonly used for the treatment of UTIs in the community.

METHODS

Over a 5 year period, from April 1st, 2006 to March 31st, 2011, all positive urine cultures yielding ≥ 104 CFU/ml of one or two organisms were investigated to obtain the isolate identification and its susceptibility to appropriate antimicrobials. Non-duplicate isolates of E. coli and Klebsiella species were tested for ESBL production by the double-disk synergy test, and their antimicrobial susceptibility profiles were determined for CIP, FM, NOR and TMP/SMX, using the disk diffusion method, in accordance with current guidelines of the Clinical and Laboratory Standards Institute (CLSI).

Among the ESBL-producing strains, a subset (n = 201) was tested by PCR for ESBL-encoding genes (blactx.m. blacks. blacks. and bla_{TEM}). Data were analysed by patient age, which was defined according to previously described inclusion parameters (≤18; 19 - 30; 31 - 50; 51 - 65; and >65 years of age).³

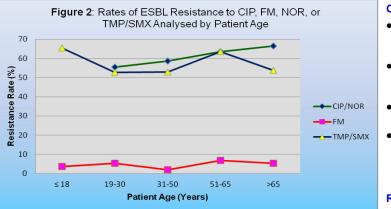
RESULTS & DISCUSSION

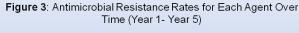

Five-Year ESBL Rates: Of the 229 181 urine specimens submitted for culture, a total of 18 759 non-duplicates of E. coli and 1.872 non-duplicates of Klebsiella spp. were isolated. Of these, there were 642 (3.4%) E. coli and 27 (1.4%) Klebsiella spp. that were ESBL-producing. Over the study five year period, the ESBL rates in E. coli increased from 1.8% to 4.0% (P < 0.01) and from 0.4% to 1.7% in Klebsiella spp. (P < 0.01). Figure 1 shows the number of ESBL-producing strains per year analysed by patient age group. Over the study period. 8.2%, 11.1%. 23.2%, 24.2%, and 33.3% of the ESBL-producing strains were isolated from patients who were ≤18, 19-30, 31-50. 51-65, and >65 years of age, respectively, suggesting a trend towards higher ESBL rates with increasing age.3

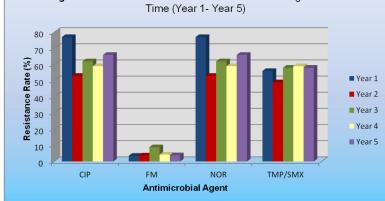
Gene Distribution: blacts.m. blacks.n, blacks.n, blacks.n, and blatten genes were present in 94%, 35%, 13%, and 44% of PCRtested strains, respectively, with blactx-M found in 97% of the E. coli and blashy in 92% of the Klebsiella strains.

Table 1: Antimicrobial Resistance Rates (Year 1 - Year 5) by Age Group

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Age Group (yr)	No. tested (n)	CIP n = 614	FM n = 669	NOR <i>n</i> = 614	TMP/SMX n = 669
		No. (%R*)	No. (%R)	No. (%R)	No. (%R)
≤18	55	NT	2 (3.6)	NT	36 (65.4)
19 – 30	74	41 (55.4)	4 (5.4)	41 (55.4)	39 (52.7)
31 – 50	155	91 (58.7)	3 (1.9)	91 (58.7)	82 (52.9)
51 – 65	162	103 (63.6)	11 (6.8)	103 (63.6)	103 (63.6)
>65	223	148 (66.4)	12 (5.4)	148 (66.4)	120 (53.8)
Overall Resistance	669	383 (62.4)	32 (4.8)	383 (62.4)	380 (56.8)


trimethoprim/sulfamethoxazole.




Antimicrobial Resistance: Table 1 summarizes the resistance rates of ESBL-producing isolates by patient age group for the five year period. Three of the four non-beta-lactams tested in this study, namely CIP, NOR, and TMP/SMX, were associated with high resistance rates, as previously reported.^{3,6} Among the PCR-tested isolates. blactx-m producing strains were more likely to be resistant to CIP and NOR, but less likely to be resistant to FM, than non-producers. FM was the most likely of the oral agents tested in this study to have a favourable antibacterial effect against community urinary ESBL producers.

Effect of Age on Resistance: The trend for higher resistance rates observed with increasing age over the five years was consistently seen with CIP and NOR, but not with FM or TMP/SMX (Figure 2).3 The identification of age groups with increasing fluoroguinolone resistance rates has been recommended for surveillance of resistance.5

Year-to-Year Resistance Rates: Figure 3 shows the year-to-year resistance rate for each antimicrobial agent tested during each interval. The resistance rate for each agent appears to have remained relatively stable over time.

CONCLUSIONS

- There has been a steady increase in ESBL rates in community urinary isolates over the past 5 years. with a trend towards higher rates in older patients.
- ESBL-producing E. coli and Klebsiella spp. were often multi-drug resistant, but most isolates remained susceptible to FM.
- blactx-m was the predominant ESBL among urinary E. coli isolates in the community.
- bla_{CTX-M} producing strains were more likely to be resistant to CIP and NOR, but less likely to be resistant to FM, than non-producers, among community urinary isolates.

REFERENCES

- Clinical and Laboratory Standards Institute. 2006-2011. Performance Standards for Antimicrobial Susceptibility Testing, M100-S16 - M100-S21, Wayne, PA, USA,
- 2. Farhat SE, et al. 2010. Gen. Meet. Am. Soc. Microbiol., San Diego, CA. USA. A-022.
- 3 Farhat SE et al. 2011 Gen Meet Am Soc Microbiol, New Orleans LA USA A-046
- 4. Infectious Diseases Society of America, 2011, Clin, Infect. Dis. 52 (Supp 5): S397-S42
- Kahan NR, et al. 2006. Ann. Pharmacother. 40: 2223-2227.
- Meier S. et al. 2011. Infection 39: 333-340.
- 7. Pitout JD. 2010. Drugs 70: 313-333.
- 8. Rodríguez-Baño J, et al. 2006. Clin Infect. Dis. 43: 1407-1414.

ACKNOWLEDGMENT

We thank Tommy Li for excellent poster layout assistance. This work was supported in part by Oxoid Canada of Thermo Fisher Scientific Canada.